SCI TOP 10

当前位置:首页>SCI TOP 10

用于糖尿病视网膜病变的远离视网膜的自动筛查程序的评估

Walton OB, Garoon RB, Weng CY

期刊名称:Archives of Ophthalmology 眼科学纪要

卷期:第134卷(2016年)2期

关键词:

摘要

 【摘要】

重要性:糖尿病性视网膜病变是致盲的主要原因,但其不利影响是可以预防与早期发现和治疗。糖尿病视网膜病变的筛查具有增加早期治疗人数的潜在可能,尤其是对于那么平时难以获得有效健康管理的人群。
目的:确定与读取中心筛查相比自动算法在解释糖尿病患者眼底照片筛查中的效力。
设计、环境和对象:采用回顾性队列分析了来自得克萨斯州哈哈里斯县里斯卫生系统的15015例Ⅰ型或Ⅱ型糖尿病患者,他们在2013年6月至2014年8月间经历了智能视网膜成像系统(IRIS)的视网膜筛查检测和nonmydriatic眼底照相。基于IRIS的解读与人工解读进行对比。计算IRIS算法人口数据。
主要成果和措施:基于计算机算法的IRIS的灵敏度和假阴性率与阅读中心解释具有相似的图像。结果:共总纳入15015例连续患者(年龄18~98岁);平均有54.3年被知悉有Ⅰ型或Ⅱ型糖尿病并接受非散瞳眼底照相用于糖尿病性视网膜病扫描检查。IRIS算法在检测视力威胁糖尿病的敏感性与读取中心算法相比为66.4%(95% CI, 62.8%-69.9%),假阴性率为2%。特异性为72.8%(95%CI,72.0%-73.5%)。在一个人口中有15.%有威胁视力的糖尿病眼病的人群中,IRIS算法阳性预测值为10.8% (95% CI, 9.6%-11.9%),阴性预测率为97.8%(95% CI, 96.8%-98.6%)。
结论和相关性:对于庞大的城市环境,建立在计算机上的IRIS算法具有高敏感度和低假阳性的特点,这表明IRIS可能作为一种传统阅读中心图像检测的有效替代手段。IRIS算法有望成为一种行之有效的筛查程序,但这种算法也还需要进一步的完善以达到更好的性能。进一步对患者安全、成本效益以及这种算法的广泛推广和应用的研究需要更好的弄明白teleretinal图像和自动分析在全球健康系统中的角色定位。
IMPORTANCE:Diabetic retinopathy is a leading cause of blindness, but its detrimental effects are preventable with early detection and treatment. Screening for diabetic retinopathy has the potential to increase the number of cases treated early, especially in populations with limited access to care.
OBJECTIVE:To determine the efficacy of an automated algorithm in interpreting screening ophthalmoscopic photographs from patients with diabetes compared with a reading center interpretation.
DESIGN, SETTING, AND PARTICIPANTS:Retrospective cohort analysis of 15015 patients with type 1 or 2 diabetes in the Harris Health System in Harris County, Texas, who had undergone a retinal screening examination and nonmydriatic fundus photography via the Intelligent Retinal Imaging System (IRIS) from June 2013 to April 2014 were included. The IRIS-based interpretations were compared with manual interpretation. The IRIS algorithm population statistics were calculated.
MAIN OUTCOMES AND MEASURES:Sensitivity and false-negative rate of the IRIS computer-based algorithm compared with reading center interpretation of the same images.
RESULTS:A total of 15 015 consecutive patients (aged 18-98 years); mean 54.3 years with known type 1 or 2 diabetes underwent nonmydriatic fundus photography for a diabetic retinopathy screening examination. The sensitivity of the IRIS algorithm in detecting sight-threatening diabetic eye disease compared with the reading center interpretation was 66.4% (95% CI, 62.8%-69.9%) with a false-negative rate of 2%. The specificity was 72.8% (95% CI, 72.0%-73.5%). In a population where 15.8% of people with diabetes have sight-threatening diabetic eye disease, the IRIS algorithm positive predictive value was 10.8% (95% CI, 9.6%-11.9%) and the negative predictive value was 97.8% (95% CI, 96.8%-98.6%).
CONCLUSIONS AND RELEVANCE:In this large urban setting, the IRIS computer algorithm-based screening program had a high sensitivity and a low false-negative rate, suggesting that it may be an effective alternative to conventional reading center image interpretation. The IRIS algorithm shows promise as a screening program, but algorithm refinement is needed to achieve better performance. Further studies of patient safety, cost-effectiveness, and widespread applications of this type of algorithm should be pursued to better understand the role of teleretinal imaging and automated analysis in the global health care system.
 

点击下载

CopyRight 2016  兴齐100版权所有 京ICP证060955号
技术支持:示剑网络   http://100.sinqi.com/